• Lin, S. et al. Underestimated interannual variability of terrestrial vegetation production by terrestrial ecosystem models. Glob. Biogeochem. Cycles. https://doi.org/10.1029/2023gb007696 (2023).


    Google Scholar
     

  • Shi, S. et al. Analysis of ecological environment quality heterogeneity across different landform types in Myanmar and its driving forces. Ecol. Indic. https://doi.org/10.1016/j.ecolind.2024.112755 (2024).


    Google Scholar
     

  • Wessely, J. et al. Climate warming may increase the frequency of cold-adapted haplotypes in alpine plants. Nat. Clim. Change 12, 77–82. https://doi.org/10.1038/s41558-021-01255-8 (2022).

    ADS 

    Google Scholar
     

  • Zhang, M. et al. Application of the optimal parameter geographic detector model in the identification of influencing factors of ecological quality in Guangzhou, China. Land 11, 1303 (2022).


    Google Scholar
     

  • Beigaite, R. et al. Identifying climate thresholds for dominant natural vegetation types at the global scale using machine learning: Average climate versus extremes. Glob. Change Biol. 28, 3557–3579. https://doi.org/10.1111/gcb.16110 (2022).

    CAS 

    Google Scholar
     

  • Li, J. et al. Evaluation of geomorphological classification uncertainty using rough set theory: A case study of Shaanxi Province, China. Earth Surf. Processes Landf. 49, 4532–4548 (2024).


    Google Scholar
     

  • Liu, D., Chen, H., Zhang, H., Geng, T. & Shi, Q. Spatiotemporal evolution of landscape ecological risk based on geomorphological regionalization during 1980–2017: A case study of Shaanxi Province, China. Sustainability 12, 941 (2020).


    Google Scholar
     

  • Zhu, L., Li, Z., Su, H. & Wang, X. Temporal and spatial distribution of ancient sites in Shaanxi Province using geographic information systems (GIS). Herit. Sci. 9, 1–10 (2021).


    Google Scholar
     

  • Kattel, G. R. Climate warming in the Himalayas threatens biodiversity, ecosystem functioning and ecosystem services in the 21st century: Is there a better solution?. Biodivers. Conserv. 31, 2017–2044 (2022).


    Google Scholar
     

  • Balist, J., Malekmohammadi, B., Jafari, H. R., Nohegar, A. & Geneletti, D. Detecting land use and climate impacts on water yield ecosystem service in arid and semi-arid areas. A study in Sirvan River Basin-Iran. Appl. Water Sci. 12, 1–14 (2022).

    ADS 

    Google Scholar
     

  • Wang, L. et al. Urban warming increases the temperature sensitivity of spring vegetation phenology at 292 cities across China. Sci. Total Environ. 834, 155154–155154. https://doi.org/10.1016/j.scitotenv.2022.155154 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Gampe, D. et al. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat. Clim. Change 11, 772–779 (2021).

    ADS 

    Google Scholar
     

  • Haile, G. G. et al. Projected impacts of climate change on drought patterns over East Africa. Earth’s Future https://doi.org/10.1029/2020ef001502 (2020).


    Google Scholar
     

  • Xiong, Y. et al. Influence of human activities and climate change on wetland landscape pattern—A review. Sci. Total Environ. 879, 163112 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Su, B., Su, Z. & Catena, Z. Trade-off analyses of plant biomass and soil moisture relations on the loess Plateau. CATENA 197, 104946–104946. https://doi.org/10.1016/j.catena.2020.104946 (2020).


    Google Scholar
     

  • Li, Y. et al. Biophysical impacts of earth greening can substantially mitigate regional land surface temperature warming. Nat. Commun. 14, 121 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu HanQiu, X. H. A remote sensing index for assessment of regional ecological changes (2013).

  • Zhang, H. et al. Combing remote sensing information entropy and machine learning for ecological environment assessment of Hefei-Nanjing-Hangzhou Region, China. J. Environ. Manag. https://doi.org/10.1016/j.jenvman.2022.116533 (2022).


    Google Scholar
     

  • Zhang, H., Ma, C. & Liu, P. Dynamic evaluation of the ecological evolution and quality of arid and semi-arid deserts in the Aibugai River Basin based on an improved remote sensing ecological index. Ecol. Inform. 82, 102727 (2024).


    Google Scholar
     

  • Zhang, L., Liu, Q., Wang, J., Wu, T. & Li, M. Constructing ecological security patterns using remote sensing ecological index and circuit theory: A case study of the Changchun-Jilin-Tumen region. J. Environ. Manag. 373, 123693 (2025).


    Google Scholar
     

  • Du, Z. et al. Ecological health assessment of Tibetan alpine grasslands in Gannan using remote sensed ecological indicators. 1–19 (2024).

  • Zenghui, S. et al. Effects of large-scale land consolidation projects on ecological environment quality: A case study of a land creation project in Yan’an, China. Environ. Int. 183, 108392 (2024).

    PubMed 

    Google Scholar
     

  • Chen, S. et al. Vegetation change and eco-environmental quality evaluation in the loess plateau of China from 2000 to 2020. Remote Sens. https://doi.org/10.3390/rs15020424 (2023).


    Google Scholar
     

  • Yang, Y. & Li, H. Spatiotemporal dynamic decoupling states of eco-environmental quality and land-use carbon emissions: A case study of Qingdao City, China. Ecol. Inform. 75, 101992 (2023).


    Google Scholar
     

  • Sun, C. et al. Ecological quality assessment and monitoring using a time-series remote sensing-based ecological index (ts-RSEI). GIScience Remote Sens. 59, 1793–1816 (2022).

    ADS 

    Google Scholar
     

  • Liu, S. et al. Spatial-temporal changes in vegetation cover in a typical semi-humid and semi-arid region in China: Changing patterns, causes and implications. Ecol. Indic. 98, 462–475 (2019).


    Google Scholar
     

  • Zhou, T. et al. Seasonal dynamics of soil water content in the typical vegetation and its response to precipitation in a semi-arid area of Chinese Loess Plateau. J. Arid Land 13, 1015–1025 (2021).


    Google Scholar
     

  • Wang, B. & Cheng, W. Geomorphic influences on land use/cover diversity and pattern. CATENA 230, 107245 (2023).


    Google Scholar
     

  • Xu, H. et al. Effects of geomorphic spatial differentiation on vegetation distribution based on remote sensing and geomorphic regionalization. Remote Sens. 16, 1062 (2024).

    ADS 

    Google Scholar
     

  • Zhou, Q., Luo, Y., Zhou, X., Cai, M. & Zhao, C. Response of vegetation to water balance conditions at different time scales across the karst area of southwestern China—A remote sensing approach. Sci. Total Environ. 645, 460–470 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fei, L., Ya, L. & Shuang, M. Regional difference of grain production potential change and its influencing factors: A case-study of Shaanxi Province, China. J. Agric. Sci. 157, 1–11 (2019).


    Google Scholar
     

  • Liu, S. & Yao, S. The effect of precipitation on the cost-effectiveness of Sloping land conversion program: A case study of Shaanxi Province, China. Ecol. Indic. 132, 108251 (2021).


    Google Scholar
     

  • Gorelick, N. et al. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    ADS 

    Google Scholar
     

  • Shouzhang, P. (ed Center National Tibetan Plateau Data) (National Tibetan Plateau Data Center, 2020).

  • Peng, S., Gang, C., Cao, Y. & Chen, Y. Assessment of climate change trends over the Loess Plateau in China from 1901 to 2100. Int. J. Climatol. 38, 2250–2264 (2018).


    Google Scholar
     

  • Peng, S. et al. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 233, 183–194 (2017).

    ADS 

    Google Scholar
     

  • Peng, S., Ding, Y., Liu, W. & Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 11, 1931–1946 (2019).

    ADS 

    Google Scholar
     

  • Shui, J., Ren, J., Peng, S. & Zhan, X. A dataset of 1 km-spatial-resolution monthly mean temperature and monthly precipitation in the loess plateau from 1901 to 2014. Sci. Data Bank 4, 133–142 (2019).


    Google Scholar
     

  • Liu, L., Chen, Y., Peng, S. & Han, Q. J. E. I. Improving forest carbon sequestration through thinning strategies under soil conservation constraints: A case study in Shaanxi Province, China. Ecol. Indic. 166, 112291 (2024).

    CAS 

    Google Scholar
     

  • Wang, R. et al. Mapping 30-m resolution bioclimatic variables during 1991–2020 climate normals for Hubei province, the Yangtze river middle reaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 17, 4646–4662 (2024).

    ADS 

    Google Scholar
     

  • Zheng, Z., Wu, Z., Chen, Y., Guo, C. & Marinello, F. Instability of remote sensing based ecological index (RSEI) and its improvement for time series analysis. Sci. Total Environ. 814, 152595 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Gong, C., Lyu, F. & Wang, Y. Spatiotemporal change and drivers of ecosystem quality in the Loess Plateau based on RSEI: A case study of Shanxi, China. Ecol. Indic. 155, 111060 (2023).


    Google Scholar
     

  • Mallick, J. et al. Analysing the trend of rainfall in Asir region of Saudi Arabia using the family of Mann-Kendall tests, innovative trend analysis, and detrended fluctuation analysis. Theor. Appl. Climatol. 143, 823–841 (2021).

    ADS 

    Google Scholar
     

  • Zhou, J., Deitch, M. J., Grunwald, S. & Screaton, E. Do the Mann-Kendall test and Theil-Sen slope fail to inform trend significance and magnitude in hydrology?. Hydrol. Sci. J. 68, 1241–1249 (2023).


    Google Scholar
     

  • Long, Y., Jiang, F., Deng, M., Wang, T. & Sun, H. Spatial-temporal changes and driving factors of eco-environmental quality in the Three-North region of China. J. Arid Land 15, 231–252 (2023).


    Google Scholar
     

  • Ren, Z., Tian, Z., Wei, H., Liu, Y. & Yu, Y. Spatiotemporal evolution and driving mechanisms of vegetation in the Yellow River Basin, China during 2000–2020. Ecol. Indic. 138, 108832 (2022).


    Google Scholar
     

  • Wang, K. et al. Sustainability of eco-environment in semi-arid regions: Lessons from the Chinese Loess Plateau. Environ. Sci. Policy 125, 126–134 (2021).


    Google Scholar
     

  • Song, Y. et al. Land space change process and its eco-environmental effects in the Guanzhong Plain urban agglomeration of China. Land 11, 1547 (2022).


    Google Scholar
     

  • Hussain, S. et al. Photosynthesis research under climate change. Photosynthesis Res. 150, 5–19 (2021).

    CAS 

    Google Scholar
     

  • Yuan, B. et al. Spatiotemporal change detection of ecological quality and the associated affecting factors in Dongting Lake Basin, based on RSEI. J. Clean. Prod. 302, 126995 (2021).


    Google Scholar
     

  • Abbass, K. et al. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res. 29, 42539–42559 (2022).


    Google Scholar
     

  • Fang, Q. et al. Effects of climatic disturbance on the trade-off between the vegetation pattern and water balance based on a novel model and accurately remotely sensed data in a Semiarid Basin. Remote Sens. 16, 2132 (2024).


    Google Scholar
     

  • Naif, S., Mahmood, D. & Al-Jiboori, M. (2020).

  • Shi, S. et al. Quantitative contributions of climate change and human activities to vegetation changes over multiple time scales on the loess plateau. Sci. Total Environ. 755, 142419–142419. https://doi.org/10.1016/j.scitotenv.2020.142419 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Oliveira, B. F., Moore, F. C. & Dong, X. Biodiversity mediates ecosystem sensitivity to climate variability. Commun. Biol. https://doi.org/10.1038/s42003-022-03573-9 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aguirre-Gutiérrez, J. et al. Functional susceptibility of tropical forests to climate change. Nat. Ecol. Evol. 6, 878–889 (2022).

    PubMed 

    Google Scholar
     

  • Pan, Z., Gao, G. & Fu, B. Spatiotemporal changes and driving forces of ecosystem vulnerability in the Yangtze River Basin, China: Quantification using habitat-structure-function framework. Sci. Total Environ. 835, 155494 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Huang, L. Advances and perspectives on soil water research in China’s Loess Plateau. Earth-Sci. Rev. 199, 102962 (2019).

    ADS 

    Google Scholar
     

  • Liu, Z., Wang, J., Wang, X. & Wang, Y. Understanding the impacts of ‘grain for green’ land management practice on land greening dynamics over the loess plateau of China. Land Use Policy 99, 105084–105084. https://doi.org/10.1016/j.landusepol.2020.105084 (2020).


    Google Scholar
     

  • Song, W., Feng, Y. & Wang, Z. Ecological restoration programs dominate vegetation greening in China. Sci. Total Environ. 848, 157729 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, F. et al. Loess plateau evapotranspiration intensified by land surface radiative forcing associated with ecological restoration. Agric. For. Meteorol. 311, 108669–108669. https://doi.org/10.1016/j.agrformet.2021.108669 (2021).


    Google Scholar
     

  • Zhang, S. et al. Using the geodetector method to characterize the spatiotemporal dynamics of vegetation and its interaction with environmental factors in the Qinba mountains, China. Remote Sens. 14, 5794 (2022).

    ADS 

    Google Scholar
     

  • Wang, Q. et al. Enhancing resilience against geological hazards and soil erosion through sustainable vegetation management: A case study in Shaanxi Province. J. Clean. Prod. 423, 138687 (2023).


    Google Scholar
     

  • Liu, X. et al. Vegetation dynamics in Qinling-Daba Mountains in relation to climate factors between 2000 and 2014. J. Geograph. Sci. 26, 45–58 (2016).


    Google Scholar
     

  • Su, J., Fan, L., Yuan, Z., Wang, Z. & Wang, Z. Vegetation dynamics and their response patterns to drought in Shaanxi province, China. Forests 14, 1528 (2023).


    Google Scholar
     

  • Seddon, N. et al. Getting the message right on nature-based solutions to climate change. Glob. Change Biol. 27, 1518–1546 (2021).

    ADS 

    Google Scholar
     

  • Wang, B. et al. Vegetation dynamics and their relationships with climatic factors in the Qinling Mountains of China. Ecol. Indic. 108, 105719 (2020).


    Google Scholar
     

  • Gu, L., Yan, J., Li, Y. & Gong, Z. Spatial–temporal evolution and correlation analysis between habitat quality and landscape patterns based on land use change in Shaanxi Province, China. Ecol. Evol. 13, e10657 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, G., Liang, R., Li, K., Wang, Y. & Pu, X. Study on the coupling model of urbanization and water environment with basin as a unit: A study on the Hanjiang Basin in China. Ecol. Indic. https://doi.org/10.1016/j.ecolind.2021.108130 (2021).


    Google Scholar
     

  • Wardeh, Y. et al. Review of the optimization techniques for cool pavements solutions to mitigate Urban Heat Islands. Build. Environ. 223, 109482 (2022).


    Google Scholar
     

  • Albert, J. S. et al. Human impacts outpace natural processes in the Amazon. Science 379, eabo5003 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, R. et al. Spatiotemporal variability of extreme precipitation in Shaanxi province under climate change. Theor. Appl. Climatol. 130, 831–845 (2017).

    ADS 

    Google Scholar
     

  • Cao, S. et al. Spatiotemporal characteristics of drought and its impact on vegetation in the vegetation region of Northwest China. Ecol. Indic. 133, 108420 (2021).


    Google Scholar
     

  • Comments are closed.